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Critical geometry of oscillating bluff bodies 
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(Received 6 July 1988 and in revised form 25 April 1989) 

Measurements are presented of the mean pressures around rectangular and D-section 
cylinders, with a flat front face normal to the flow, forced to oscillate transversely at 
an amplitude of 10 YO of the length of the front face. The ratio of depth (streamwise 
dimension) to height (cross-stream dimension) of the cross-section ranges from 0.2 to 
1.0 for rectangular cylinders and from 0.5 to 1.5 for D-section cylinders. The range 
of reduced velocities investigated, 3 to 11, includes the vortex-resonance region. 
When increasing the depth, an oscillating bluff cylinder shows a critical depth where 
base suction attains a peak. The value of a critical depth is lowered with decreasing 
reduced velocity. In particular, an extraordinarily low critical depth with a very high 
base suction is obtained on cylinders oscillating at vortex resonance. For cylinders 
with depths beyond the critical, a reattachment-type pressure distribution is 
established on the afterbody due to the shear-layer/edge direct interaction. The 
shear-layerledge direct interaction can also occur on osciliating cylinders with a fixed 
splitter plate. A t  low reduced velocities, the reattachment-type pressure distributions 
on cylinders with and without a splitter plate are similar except for the mean level. 
A remark is made on the critical geometry of bluff bodies under various flow 
conditions. 

1. Introduction 
Recent development in wind engineering has greatly renewed interest in the 

separated flow past bluff bodies (see, for example, Bearman 1984; Nakamura 1988). 
The flow around tall buildings and long suspension bridges exposed to the wind is 
highly complicated, and they are susceptible to wind-induced oscillations of various 
kinds. A detailed analysis of the physical processes involved in bluff-body flow is 
required to predict precisely the wind loads experienced by such buildings and 
structures. 

One of the most interesting aspects of the problem is the effect of body oscillation 
on the (time) mean and unsteady bluff-body flows, where the complex interaction 
between the body oscillation and the formation and shedding of vortices plays a 
central part. In this paper the problem of the effect of body oscillation on the mean 
bluff-body flow is considered. It has a close link with the effect of the free-stream 
turbulence on the mean bluff-body flow (e.g. Nakamura & Ohya 1984), although 
body oscillation normally generates two-dimensional velocity fluctuations and 
turbulence essentially consists of three-dimensional velocity fluctuations. 

It has been known that the (mean) base pressure of a bluff body is very sensitive 
to body oscillation, and it is also strongly dependent on the afterbody shape. For 
example, the base pressures of a normal flat plate, a circular cylinder and a D-section 
cylinder (with a depth-to-height ratio of 0.5 in the present terminology), subject to 
transverse oscillation, are decreased considerably at  vortex resonance, where the 
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body frequency is equal to the vortex-shedding frequency for a stationary cylinder, 
while those of a square-section and a triangular cylinder with a vertex pointing 
downstream are no lower than the values measured on stationary cylinders 
(Bearman & Davies 1977; Bearman & Obasaju 1982). On the other hand, the base 
pressure of a rectangular cylinder with a depth-to-height ratio of 0.4 shows a critical 
minimum at vortex resonance (Mizota 1984). The mechanisms by which such 
complicated base- pressure variations are produced remain unclear. The present 
investigation is concerned with the mean flow past rectangular and D-section 
cylinders with variable afterbody lengths that are subject to transverse oscillation. 
The principal aim of the present investigation is to correlate existing knowledge on 
mean bluff-body flow more systematically. 

2. S a n e  related topics on bluff-body flow 
2.1. Critical geometry of stationary bluff cylinders 

The work of Nskaguchi, Hashimoto & Muto (1968) on stationary rectangular 
cylinders showed that, as the cylinder depth is increased from zero, base pressure 
decreases rapidly to a critical minimum at a depth just beyond about 0.6 times the 
height. Bearman & Trueman (1972) argued that the decrease in base pressure for 
cylinders with depths below the critical is associated with an increased curvature of 
the shear layer in roll-up as a result of a reduced base-cavity size. They also suggested 
that the increase in base pressure for cylinders with depths beyond the critical is 
associated with vortices being forced to form further downstream as a result of the 
influehce of the tear corners. 

The influence of the rear corner on the shear layer just mentioned is hereinafter 
referred to as the shear-layer/edge direct interaction. Nakamura & Tomonari (1981) 
showed that the shear-layer/edge direct interaction, the final stage of which is 
reattachment of the shear layer on the side face, yields a reattachment-type pressure 
distribution on the side face that is characterized by a low-pressure plateau followed 
by recovery to some high pressure. When a cylinder with a depth beyond the critical 
is at  small positive (clockwise) incidence, it experiences a downward load due to the 
pressure difference between the upper and lower side faces that is caused by the 
shear-layer/edge direct interaction. This is the reason why aeroelastic galloping can 
occur for rectaqular cylinders with depths beyond the critical (Nakamura & 
Tomonari 1977, 1B81). Laneville and his associates (Da Matha Sant’Anna et al. 1987) 
also discussed the pressure-recovery characteristics of rectangular cylinders. 

2.2. The effects of body oscillation on bluff-body Jlow 
It will be useful here to review the overall effects of body oscillation on the flow 
past a bluff body (Nakamura & Matsukawa 1987). The flow past an oscillating bluff 
body has two dominant frequency components ; the frequency of body oscillation fy 

and the frequency of natural vortex shedding f v  (natural vortex-shedding frequency 
refers to the frequency that would be obtained on a stationary cylinder under similar 
flow conditions). 

The flow with the body frequency f, consists of two main parts. One is the flow 
linked directly witb the acceleration of the body, and the other is the flow responding 
to the continual vaiation of the angle of incidence of the body. The flow linked with 
the body acceleration may be dominant at low reduced velocities (see next section for 
the definition), but it is relatively insignificant for bluff bodies with short afterbodies. 



Critical geometry of oscillating bluff bodies 377 

The variation of the angle of incidence produces undulation of the wake, the 
wavelength of which is progressively shortened with decreasing reduced velocity. 
Wake undulation can manifest itself as motion-dependent vortices when the reduced 
velocity is low and the amplitude of the imposed body oscillation is large. However, 
the influence of the imposed body oscillation is present as wake undulation at any 
reduced velocity whether or not it manifests itself as motion-dependent vortices. 

When the frequency of the imposed body oscillation approaches that of natural 
vortex shedding, a strong resonant interaction can occur between wake undulation 
and natural vortex shedding. The flow response at vortex resonance is restricted to 
a narrow range of reduced velocity, but it can create enormous changes in both 
steady and unsteady flow characteristics. For example, unsteady pressures and lift 
force exhibit typical linear resonance characteristics, i.e. a sharp peak in amplitude 
with an abrupt phase change a t  vortex resonance. For large amplitudes of body 
oscillation, the vortex-shedding frequency is locked-in to the body frequency. 
Improved spanwise correlation in vortex shedding is also characteristic of an 
oscillating bluff body. Since vortex shedding is a strongly nonlinear phenomenon, 
resonant interaction between vortex shedding and the imposed body oscillation can 
vitally influence the time-mean flow. 

On this basis three distinct flow ranges of interest can be identified : the high-speed 
range where f, + f,, the range of vortex resonance where f, x f,, and the low-speed 
range where fu % f,. 

3. Experimental arrangements 
The experiments were conducted in a low-speed wind tunnel with a rectangular 

working section 3 m high, 0.7 m wide and 2 m long. The models used in the present 
experiment were rectangular and D-section cylinders. As is shown in figure 1, the 
cross-section of the D-section cylinders, as referred to here, was a rectangu- 
lar-semicircle combination. The height h of the model was constant and equal to 
15 cm, while the depth d varied widely. The depth-to-height ratio thus obtained was 
d / h  = 0.2 to 1.0 for rectangular cylinders, and d / h  = 0.5 to 1.5 for D-section ones. The 
model had 45 cm (= 3 h) square end plates with a separation of 65 cm (= 4.3 h) and 
it was mounted horizontally in the working section with a flat face normal to the 
flow. 

The surface static pressures around the model were measured by using pressure 
taps of 0.3 mm diameter, and the wake static pressures along the model centreline 
were measured by using a long pressure tube of 2 mm diameter, which had four 
equally spaced holes of 0.3mm diameter on its circumference. The pressure was 
determined with a calibrated inductance-type pressure transducer, and the mean 
pressure p is presented in the form ofa pressure coefficient C, = (13 -po) / ($pU2) ,  where 
po,  p,  and U are the mean static pressure, the air density and the velocity of the free 
stream respectively. A constant-temperature hot-wire anemometer was used to 
measure fluctuating flow velocities. A hot-wire probe was placed 1 h down and 
1.5 h behind the front corner of the model. 

The model was forced to oscillate transverse to the flow at a constant frequency 
off, = 3 or 6 Hz (mostly 6 Hz) with an amplitude of 1.5 cm (= 0.1 h) by using an 
electro-mechanical vibrator. The flow velocity was varied from about U = 2.5 to 
10.0 ms-' so that the reduced velocity, defined by 0 = O/(fvh), ranged from about 
2.8 to 11.1, including the vortex-resonance velocity or. or is given by or = U / (  f, h),  
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FIQURE 1. D-section model. 

and hence is equal to the inverse of the Strouhal number for a stationary cylinder. 
The range of the Reynolds number, which is based on the model height h, was about 

In some cases a wool-tuft test was made to see whether or not the flow reattached 
on the afterbody of the model. An experiment was added using D-section cylinders 
with a long splitter plate placed downstream and fixed relative to the tunnel walls. 
The splitter plate was 11.3 h in length and 0.07 h in thickness, and the gap between 
the model and the splitter plate was about 0.1 h. 

(2.5 to 10) x 1 0 4 .  

4. Experimental results 
4.1. Pressure distributions around a rectangular and a D-section cylinder 

Table 1 shows the Strouhal number S, based on h, and the corresponding vortex- 
resonance velocity Or( = 1/8) for stationary rectangular and D-section cylinders, 
which were determined by use of a hot-wire anemometer. Initial measurements on 
stationary cylinders showed that the base pressure along the cylinder span was 
reasonably uniform in agreement with a previous similar experiment (Nakamura & 
Matsukawa 1987). Figure 2 shows pressure distributions around a rectangular 
cylinder with d l h  = 0.4, together with those along the wake centreline, for four 
values of the reduced velocity, stationary, O = 8.9, 7.2 (=  l . l lOr)  and 3.9, while 
figure 3 shows pressure distributions around a D-section cylinder with d / h  = 0.5. The 
front-face pressure distributions of a rectangular and a D-section cylinder showed 
nothing unusual. They were almost independent of changing both the depth and the 
reduced velocity, and, therefore, any changes in drag will be reflected by changes in 
base pressure. Figure 2 shows that the pressure on the stationary cylinder was 
reasonably uniform over the afterbody, whereas the pressure along the wake 
centreline decreased rapidly owing to vortex formation before recovering towards 
the free stream value. One of the interesting features shown in figure 3 is that the 
pressure on the stationary cylinder was not uniform but decreased considerably along 
the afterbody from the separation point to the base. The results for oscillating 
cylinders are the main topics of this investigation and will be discussed in later 
sections. 

4.2. The effects of blockage, end plates and the Reynolds number 
In an experiment using a sectional model with end plates the combined blockage 
and end effects should be considered. Generally, the two effects have opposite signs ; 
the former decreases the b w  pressure of a bluff body whereas the latter increases it. 
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Rectangular cylinders 

S 0.156 0.156 0.154 0.147 0.143 0.135 0.127 
d l h  0.2 0.3 0.4 0.5 0.6 0.8 1 .o 

or 6.4 6.4 6.5 6.8 7.0 7.4 7.9 

d l h  0.5 0.63 0.7 0.77 0.83 0.9 1 .o 
D-section cylinders 

s 0.149 0.145 0.135 0.132 0.128 0.125 0.123 
ci, 6.7 6.9 7.4 7.6 7.8 8.0 8.1 

TABLE 1. Strouhal number S and vortex-resonance velocity 0, (=  118) for stationary rectangular 
and D-section cylinders 

x l h  - 
1 2 3 
I I I 

I I I 

FIGURE 2. Pressure distribution around and behind a rectangular cylinder with d l h  = 0.4. 
A, stationary; 17, u=8.9; 0, 7.2 ( =  1 . 1  Or); A, 3.9. 

In the present experiment the blockage ratio was as large as 5 %  and the size of the 
end plates used was relatively small so that their effects may be considerable. 
However, none of the results presented have been corrected for these two effects since 
there is no method of correction available for measuremen& made with an oscillating 
bluff body. 

Figure 4 shows the base-suction coefficient - C,, of a stationary D-section cylinder 
plotted against depth-to-height ratio d/h  for three different values of the Reynolds 
number. The results indicate that the effect of the Reynolds number was fairly 
considerable, and increasing Reynolds number produced increasing base suction for 
a range of d/h  from 0.5 to 1.1. A similar, though relatively small, effect of the 
Reynolds number was observed on the base-suction coefficient of a stationary 
rectangular cylinder. 

IS FLM 208 
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FIQURE 3. Pressure distributions around a D-section cylinder with dlh  = 0.5. A, stationary; 
0, u= 8.9; 0, 7.2 (= 1.1 or); A, 3.9. 
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FIGURE 5(a ,  b ) .  For caption see page 383. 
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FIGURE 5 ( c ,  d ) .  For caption see facing page. 
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FIGURE 5 .  Base-suction coefficient versus reduced velocity for oscillating rectangular and D-section 
cylinders. Black symbols are for stationary cylinders. ( c )  includes the pressure coefficient at  
separation Cps.  (a) Rectangular cylinder with d/h = 0.4. (b )  Rectangular cylinder with d/h = 0.6. 
( c )  Rectangular cylinder with d/h = 1.0. ( d )  D-section cylinder with d /h  = 0.5. ( e )  D-section 
cylinder with d/h = 1.0. (f) D-section cylinder with d /h  = 1.5. 
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4.3. The variation of the base-suction coeficient with reduced velocity 

In general the base-suction coefficient of an oscillating bluff body is dependent on 
the cross-section geometry, the reduced velocity and the reduced amplitude of 
oscillation, i.e. the amplitude relative to the body size (=  h) .  As was mentioned 
earlier, the reduced amplitude of oscillation was constant throughout the experiment 
and equal to 0.1. 

Figure 5 shows base-suction coefficients plotted against reduced velocity for a 
selection of rectangular and D -section cylinders. The base-suction coefficients on 
stationary cylinders were obtained over a range of the flow velocit,y tested. These are 
plotted in figure 5 with reduced velocities having a nominal value of frequency of 3 
or 6Hz .  Because of the Reynolds-number effect (figure 4), they are more or less 
increased with reduced velocity. Although the base-suction coefficient varies in a 
very complicated way both with the reduced velocity and with the depth-to-height 
ratio, there is a close similarity in the base-suction characteristics between 
rectangular and D-section cylinders. The results for the base-suction coefficient of the 
square-section cylinder shown in figure 5 ( c )  are in general agreement with those 
obtained by Bearman & Obasaju (1982). A rather significant difference between the 
two measurements is found in the range of frequency lock-in. Our lower end of lock- 
in, which was determined from the measurement of the fluctuating velocities in the 
wake, is close to the vortex-resonance velocity and somewhat higher than the value 
of Bearman & Obasaju, which was determined by the measurement of the fluctuating 
side-face pressures. Figure 5 (c )  also includes the results for the suction coefficient a t  
separation -CPs measured a t  a position 0.05 h downstream of the front corner. 

5. Further experimental results and discussions 
5.1. Critical geometry of oscillating rectangular and D-section cylinders 

Figure 6 shows base-suction coefficients of rectangular cylinders plotted against 
depth-to-height ratio for various values of the reduced velocity. It can be seen that 
there is a critical depth showing a peak base suction a t  each reduced velocity. The 
value of a critical depth is lowered with decreasing reduced velocity. In  particular, 
the critical depth a t  vortex resonance shows an extraordinarily low value of about 
0.4 with a very high base suction, which is in agreement with Mizota (1984). Figure 
7 shows similar results for D-section cylinders where the critical depth a t  vortex 
resonance is found to be equal to about d l h  = 0.7. For low reduced velocities, say, 
a = 4.0, there is no critical depth since the base suction is decreased progressively with 
increasing d / h  from 0.5. 

A comment is necessary on the critical depth a t  vortex resonance. In the vortex- 
resonance range a conventional plot of -CPb with a given value of 0 may not be 
practical since, as is seen in figure 5 (a ,  d ) ,  the base-suction coefficient often varies very 
rapidly in this narrow range. We have instead plotted peak values of the base-suction 
Coefficient. The reduced velocity at which a peak base suction occurred was not 
exactly equal to the vortex-resonance velocity but, for short cylinders, slightly 
higher depending on the amplitude of the imposed oscillation, and very close to the 
upper end of lock-in obtained for fluctuating flow velocities. It is conveniently 
referred to as the vortex-resonance velocity in figures 6 and 7. Figure 8 shows a plot 
of the critical depth against reduced velocity for rectangular and D-section cylinders 
along with that of the vortex-resonance velocity. 

Critical depth may be dependent on the amplitude of body oscillation. Mizota 
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FIGURE 6. Base-suction coefficient versus dlh  for oscillating rectangular cylinders. 
A, stationary; 0 ,  u= 8.9; 0, ur; 0,  5;  A, 2.8. 
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FIGURE 7. Base-suction coefficient versus d / h  for oscillating D-section cylinders. 
0, 0 = 9 ;  0, U,;  V, 6;  0 ,  5 .5 ;  A, 4. 
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FIQURE 8. Critical geometry as a function of 0 and d/h.  White symbols are for the critical depth, 
and black symbols are for the vortex-resonance velocity. A, A, rectangular cylinder; 0, 0 ,  D- 
section cylinder. 

(1984) conducted an experiment on rectangular cylinders oscillating at  vortex 
resonance, where the reduced amplitude of oscillation was varied from 0.1 to 0.025. 
He found that the value of the critical depth remained unchanged and equal to 
d / h  = 0.4 with decreasing oscillation amplitude, although the value of the peak base 
suction was progressively lowered and approached that corresponding t,o the 
stationary cylinder. 

5.2.  The effect of wake undulation on bluff-body meanjow 
We consider the flow past an elongated bluff body where the separation bubble is 
formed on the side face downstream of the separation point. Nakamura & Ozono 
(1987) recently conducted an experiment on a separated-and-reattaching flow past a 
flat plate using an oscillating leading-edge spoiler and showed that the effect of 
spoiler oscillation is substantial and the separation bubble is progressively shortened 
with decreasing reduced velocity. The mechanism by which the separation bubble is 
shortened is that the Reynolds stresses in the turbulent shear layer are enhanced 
greatly by the wake undulation (or equivalently by the motion-dependent vortices), 
generated by the spoiler oscillation, to cause the shear layer to reattach earlier on the 
side face. We can assume that the same mechanism, enhanced Reynolds stresses in 
the undulated turbulent shear layer, could work for short bluff bodies where there is 
no flow reattachment. This can explain the present results that the critical depth is 
lowered progressively with decreasing reduced velocity except for the vortex- 
resonance range. 
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5.3. Reattachment-type pressure distributions on oscillating cylinders 
As mentioned earlier, the shear-layerledge direct interaction produces a reattach- 
ment-type pressure distribution on a stationary bluff cylinder (Nakamura & 
Tomonari 1981). It will be interesting to  see how this concept applies to oscillating 
bluff cylinders. The problem was examined separately for the three different ranges 
of reduced velocity. The results for the high-speed range are not shown here, 
however, since they were not much different from those on stationary cylinders. 

Figure 9 shows pressure distributions on four rectangular cylinders with different 
depths oscillating a t  vortex resonance. As can be seen, the side-face pressure 
distributions on cylinders with d l h  = 0.3 and 0.4 are reasonably uniform whereas a 
reattachment-type pressure distribution can be identified on the side faces of 
cylinders with d l h  = 0.5 and 0.6. We conclude therefore that when increasing the 
depth while keeping vortex resonance, a reattachment-type pressure distribution 
manifests itself at the critical depth, i.e. a t  a rectangular cylinder with d l h  = 0.4. It 
should be noted that the flow has not yet reattached on the side face a t  the critical 
depth. The wool-tuft test indicated no sign of steady reattachment on a rectangular 
cylinder with d l h  = 0.8 a t  reduced velocities down to 0 = 3.9. 

Figure 10 shows similar results for D-section cylinders. I n  this case, a 
reattachment-type pressure distribution is less easily identified. However, a local 
pressure recovery is seen during a large pressure drop towards the base for cylinders 
with d l h  = 0.83 and 0.9 so that the conclusion remains the same as for rectangular 
cylinders. 

As Bearman & Trueman (1972) discussed, there is a complicated interplay among 
the vorticity that is being shed from a bluff body, the base pressure and the 
downstream vortex formation. In  figure 11 attention is paid to the base pressure Cpb, 
the minimum pressure in the wake C,, and the pressure a t  separation C,, to see how 
these three are varied with d l h  for rectangular cylinders oscillating a t  vortex 
resonance (figure 1 1  a )  and a t  0 = 3.9 (figure 11 b) .  

As is expected, the variation of - C,, with d l h  in figure 11 (a)  is in line with that 
of - Cpw. It is seen that this is also true for - Cps. In particular, the decrease in - C,, 
beginning a t  the critical depth indicates that there is substantial feedback control of 
the vortex formation over the flow a t  separation. However, it is interesting that the 
decrease in - C,, beginning at the critical depth is considerably smaller than that in 
-Cpb. If we define gross pressure recovery by Cpb-Cps, it increases with d l h  for 
cylinders with depths beyond the critical. Namely, a reattachment-type pressure 
distribution has been established on cylinders with depths beyond the critical. 
Although the gross pressure recovery is negative for d l h  between the critical and 
d l h  = 0.7, approximately, there is a significantly positive local pressure recovery 
on the side face, as is exemplified in figure 9 for cylinders with d / h  = 0.5 and 0.6. 

Figure 5(a, d )  shows that a short bluff cylinder has a peak in base suction a t  a 
reduced velocity much lower than the vortex-resonance velocity. It was found, as 
expected, that the values of d l h  and 0 a t  which this peak occurred collapsed on the 
curve of the critical depth given in figure 8. 

Figure 5 ( d )  indicates that the value of reduced velocity a t  which the D-section 
cylinder with d l h  = 0.7 becomes critical is equal to 0 = 5.8. Figure 12 shows pressure 
distributions on the same cylinder corresponding to four different values of reduced 
velocity. At the lowest reduced velocity, equal to 0 = 3.9, much lower than the 
critical, a reattachment-type pressure distribution caused by the shear-layerledge 
direct interaction is seen. With increasing reduced velocity, the interaction is 
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FIGURE 9. Pressure distributions around rectangular cylinders oscillating at vortex resonance. 
0, d l h  = 0.3; 0 ,  0.4; A, 0.5; A, 0.6. 

B 

FIGURE 10. Pressure distributions around D-section cylinders oscillating at  vortex resonance. 
0 ,  dlh  = 0.7; A, 0.83; A, 0.9. 
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FIGURE 11. Variations of the base-pressure coefficient Cpb, the pressure coefficient at separation C,, 
and the minimum pressure coefficient in the wake Cpw with d / h  for oscillating rectangular 
cylinders. (a)  0 = Ur. ( b )  0 = 3.9. 
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FIGURE 12. Pressure distributions around a D-section cylinder with d / h  = 0.7 oscillating a t  low 
reduced velocities. 0, u= 6.7; V, 5.8; 0,  5 ;  A, 3.9. 
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weakened with a smaller pressure recovery (0 = 5.0), and eventually at the critical 
reduced velocity, U = 5.8, the pressure distribution has a flat level over a region 
including the base. With further increase in 0 before reaching Or, the type of pressure 
distribution remains essentially unchanged but the level of pressures over the 
afterbody is increased (0 = 6.7). 

For short, rectangular cylinders oscillating a t  low reduced velocities below the 
critical, we also found that a reattachment-type pressure distribution is established 
on the side face. This is indicated in figure 11 (b) ,  where it can be seen that the gross 
pressure recovery Cpb-Cps a t  0 = 3.9 starts to increase a t  the critical depth. 
Another point of interest in figure 11 ( b )  is that the variation of -Cp, with d l h  
reverses its direction a t  d l h  = 0.8, i.e. it now starts to increase with dlh .  Bearman & 
Obasaju (1982) observed that at 0 = 4.0 the flow around an oscillating square- 
section cylinder reattached intermittently to the side faces during part of the cycle. 
Thus, when intermittent reattachment occurs a t  low reduced velocities, natural 
vortex shedding behind the cylinder becomes less influential on the side-face flow so 
that - C,, now increases with the development of the shear-layerledge direct 
interaction. The trend is more clearly seen in figure 5 ( c )  for the square-section 
cylinder where - Cps increases rapidly with decreasing reduced velocity below 
0 = 6.0 while -CPb is progressively decreasing. 

5.4. Oscillating bluff cylinder with a $xed splitter plate 
With a spitter plate, the two shear layers issuing from a bluff cylinder cannot 
communicate with each other so that there is no formation of regular vortices behind 
the cylinder. In  figure 13 the base-suction coefficient of an oscillating D-section 
cylinder with d l h  = 0.7 with a fixed splitter plate is shown plotted against reduced 
velocity, whereas figure 14 shows pressure distributions on the same cylinder for 
several values of reduced velocity. The corresponding results for the cylinder without 
a splitter plate are also included for comparison in the two figures. 

Figure 13 shows that there is a critical reduced velocity where base suction shows 
a peak, although it is only a mild one. The value of the critical reduced velocity, equal 
to about 6.0, is close to that for the cylinder without a splitter plate which is equal 
to 5.8. The experiment showed that the value of the critical reduced velocity was 
increased with increasing dlh. Figure 14 shows that a reattachment-type pressure 
distribution is established for reduced velocities lower than the critical for the 
cylinder with a splitter plate. It is interesting that the pressure distribution at  a low 
reduced velocity of 0 = 3.9 is similar to  that for the cylinder without a splitter plate, 
although the mean level of pressure is different between the two. It thus appears that 
as the reduced velocity is lowered, the influence of the body oscillation on the mean 
flow tends to be separate from that of the natural vortex shedding. 

The pressure distributions on the splitter plate are also interesting. We can see a 
large pressure recovery on the splitter plate for all reduced velocities shown. The 
wool-tuft test indicated that the flow did not reattach on the cylinder surface but 
reattached on the splitter plate. The pressure recovery a t  0 = 3.9 is thus twofold ; one 
is caused by the shear-layerledge direct interaction on the cylinder surface, and the 
other is caused by the final flow reattachment on the splitter plate. 

5.5. Base suction characteristics in the vortex-resonance range 

As can be seen in figure 5, the peak base suction a t  vortex resonance is lowered with 
increasing dlh beyond the critical, vanishes somewhere (figure 5b,  e ) ,  and reappears 
as a mild one with further increase in dlh. It should be noted that the fluctuating lift 
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force of an oscillating rectangular cylinder with d / h  = 0.6 shows a sharp peak at  
vortex resonance, although the (mean) base suction has no peak (Nakamura & 
Matsukawa 1987). Lowering of the base suction is certainly caused by the progressive 
development of the shear-layerledge direct interaction. However, the mechanism by 
which a peak base suction reappears with further increase in d l h  remains unclear. It 
might be because the flow would be closer to reattachment ; if reattachment should 
occur, a peak base suction would appear a t  vortex resonance. 

5.6. Critical geometry of bluff bodies under various flow conditions 

There are many parameters t,hat can influence the flow around a bluff body. These 
include, among others, the cross-section geometry, the incidence, the body oscillation 
and the free-stream turbulence. It has become apparent that  critical geometry can 
be reached by controlling any one of them while keeping the others unaltered. 

Bearman & Trueman (1972) showed that the value of the critical depth for 
rectangular cylinders can be sensibly controlled by changing incidence or using 
trailing-edge spoilers. Similar measurements were done by Nakamura & Tomonari 
(1977, 1979). It is well known (e.g. Laneville, Gartshore & Parkinson 1977; 
Nakamura & Tomonari 1976, 1981; Courchesne & Laneville 1982) that the free- 
stream turbulence can significantly lower the value of the critical depth of bluff 
cylinders such as rectangular and D-section ones. Most recently Naudasher (1987) 
discussed significant changes in the mean drags of circular and rectangular cylinders 
oscillating in the streamwise direction in connection with flow-induced in-line 
oscillations. It is important to mention that the most essential event common to all 
these cases is the manifestation of the shear-layerledge direct interaction when 
critical geometry is reached. 

6. Conclusions 
The experiments on rectangular and D-section cylinders with variable afterbody 

lengths, forced to oscillate transversely over a wide range of reduced velocity 
including the vortex-resonance one, showed that the bluff-body mean flow was 
highly sensitive to body oscillation. The base-suction coefficient was strongly 
dependent both on the reduced velocity and on the afterbody length, but there was 
a close similarity in the base-suction characteristics between rectangular and D- 
section cylinders. 

Just as bluff cylinders held stationary, oscillating bluff cylinders had a critical 
depth where a peak base suction was attained. The value of a critical depth was 
lowered with decreasing reduced velocity. An extraordinarily low critical depth with 
a very high suction was attained on cylinders oscillating at vortex resonance. For 
bluff cylinders with depths beyond the critical, a reattachment-type pressure 
distribution was established as a result of the shear-layerledge direct interaction, 
thereby decreasing the base suction. 

The experiment on an oscillating D-section cylinder with a fixed splitter plate 
showed that the shear-layer/edge direct interaction can also occur in this case. The 
reattachment-type pressure distributions on cylinders with and without a splitter 
plate a t  low reduced velocities were similar except for the mean level. It is therefore 
suggested that a t  low reduced velocities, the influence of the body oscillation on the 
mean flow can be separate from that of the natural vortex shedding. Finally, a 
remark is made on the critical geometry of bluff bodies under various flow conditions. 
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